The
University

Of
Sheffield.

Accelerating Road Network Simulations using GPUs

Peter Heywood

The University of Sheffield

= MComp Computer Science & Artificial Intelligence at Sheffield (2010-2014)
= PhD Student at Sheffield (2014 - 2018)
= Research Software Engineer (RSE) and PhD Candidate at Sheffield (2018-2021)

Research
Software
Engineering
Sheffield.

Table of contents

1. Road Network Simulation

2. GPU Accelerated Macroscopic Simulation
3. GPU Accelerated Microscopic Simulation

4. Summary

Road Network Simulation

Road Network Simulation

= Global transport demand is increasing
= Many constraints on transport networks

= Simulation can improve use of limited resources

= Planning

= Management

CC BY 2.0 Highways England
https://www.flickr.com /photos/highwaysagency,/9950013283,/

http://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/highwaysagency/9950013283/

Road Network Simulation

= Simulations are becoming more computationally
expensive

= Larger - City-scale, National-scale
= More Complex - CAVs, Smart Motorways, ...
= More Permutations

= Better-than Real-time simulations required for
active management

= Need more compute!

Simulation Categories

= Macroscopic Simulation (and Assignment) .‘ E
= Top-Down e
= High level, flow simulation

= Mesoscopic Simulation Top-Donn

= Middle-out
= Fine-grained Macrosimulation or Platoons/groups

Bottom-Up

= Microscopic Simulation

= Low level, individual vehicles

= Bottom-Up ‘
=g

Graphics Processing Units (GPUs)

= Massively Parallel co-processors
= Data-parallel algorithms and data structure

= Suitable for all scales of road network simulation

= Different degrees of parallelism expressed
= Different levels of performance improvement

NVIDIA DGX-2

GPU Accelerated Macroscopic Simulation

Macroscopic Simulation

= Top-Down Simulations

= Models networks as flows on roads (i.e pipes)

High level of abstraction

Relatively long time steps

= Misses short-term events

Low data requirements

Lower computational cost

©@@®@By Tamserpo - Own work, CC BY-SA
3.0nttps://commons.wikimedia.org/w/index.php?curid=9957456 7

https://commons.wikimedia.org/w/index.php?curid=9957456

SATURN

Simulation and Assignment of Traffic to Urban Road Networks

Commercial multi-core CPU software
Originally Developed in the 1970s by Dirck Van Vliet at Leeds University
Used by companies and governments for planning

= Highways England

= Transport for London (TfL)

= Transport for the North (TftN)
= etc.

Fortran 77 with OpenMP

NTKINS gATURN

Member of the SNC-Lavalin Group

SATURN Algorithms

= |terative Equilibrium-based algorithm of Assignment

and Simulation
o Network Data ——3»
= Wardrop's Equilibrium

= Assignment Phase

Link Flow Values Flow Delay Curves
= Network + Demand Matrix -> Flow per road
= Different vehicles types are considered T
independently (User Classes)
= Trip Matrix contains many Origins and Assignment-Simulation Loop in SATURN
Destinations

= Known as Zones or Centroids

SATURN Models

= Range of scales from tiny to very very large

= Road networks are very sparse graphs
= Preprocessing step to create a denser representation
= Referred to as “Spider Network"
= Contraction Hierarchies

= Network E is far too small for the GPU
= Very useful for debugging!

= These are Very Sparse graphs, even when preprocessed

Model ‘ Size ‘ Centroids ‘ Vertices Edges
E Town 12 17 74
D Small City 547 2700 25385
C Large City 2548 15179 | 132600
L Metropolitan 5194 18427 | 192711

10

TURN Profiling

Time per subroutine for Network L

g q 5000
= Serial version of SATALL ”)
40000 97.4%
= Largest available model (L)
35000
= London + Surrounding area .
= > 11 Hour Runtime T 25000
p
. . . £
= 97.5% in a single subroutine = 20000
. o 15000
= Candidate for Parallelisation
10000
= Computes shortest paths, and traces them s000
aCCumu|at|ng ﬂOW o 0.3% 0.3% 0.1% 0.1%
A B C D E
Subroutine

11

CPU Performance

Single Core CPU Multi-Core CPU

Total Time - Serial SATALL Total Time - Multicore SATALL
o 2
50000.00 =8 8000.00 3
EES ~
45000.00 S8 760000
40000.00 P
6000.00 o
35000.00 g
%
— % 5000.00
3 30000.00 3
§ o
2 v
[
& 2500000 8 400000
o o Rl
E [E b1
E 20000.00 83 L - 2
g = X
8 3 3
15000.00 83 s
- 2000.00 o5
10000.00 @ 8 -
g o 1000.00 [
g g R
5000.00 5oy 8 8 5 g 5 2
g 4 & &
0.00 —-—— 0.00 I ==
E D c L E D c L
Wi7-4770K (8) Wi7-6850k (12) mi7-4770K (8) mi7-6850k (12)

12

CPU Scaling

Single Core CPU Multi-Core CPU
Network C Speedup against Network L Speedup against Total Sooed
Thread Count Thread Count SRR
13.000 13.000 —&— Assignment Speadup
12.000 P 12.000 ° - & - Perfect Scaling
11.000 ° 11.000 .
10.000 . (0000 i = {7 6850k
9.000 é 9.000 .
., 8000 ¢ o 8000 ¢ = 6 cores
§ 7.000 P4 § 7.000 é
2 6.000 & & 600 . = 12 threads
@ 5000 e 5.000 o N
4.000 . 4.000 . = 3 Repetitions
3.000 ey . e
2,000 2.000 = Diminishing
1.000 1.000
5000 0000 Returns

0123 4567 891011213
Thread Count

0123456 7 8910111213
Thread Count

13

CPU Algorithm

For each User Class of vehicle
For each origin centroid
Calculate shortest paths (SSSP)
For each destination centroid
Trace the route updating flow (FA)

14

CPU Algorithm

= Single Source Shortest Path (SSSP)
= Calculated for all origins
= Typically % of total nodes
= All-Pair Shortest Path (APSP) algorithms would do too much work
= Uses the D'Esopo-Pape algorithm
= Algorithmic decision in the 1970s, due to benchmarking at the time
= Switching to a modern implementation of Dijkstra's would likely yield a speed up
= Flow Accumulation
= Trace routes between all origin-destination pairs
= Update per-edge flow value at each step
= Double precision to avoid numerical loss

15

GPU Algorithm

For each User Class of vehicle (independent tasks)
For each origin (centroid) calculate SSSP in parallel
For each origin—destination pair accumulate flow in parallel

= Use the Bellman-Ford SSSP algorithm
= Highly Parallel, but much less-efficient than Dijkstra's or D'Esopo-Pape

= For up to a worst-case number of iterations
= Consider each edge in the network, updating routing information.

16

Initial GPU Implementation

SSSP Results for Single Origin

500.00

450.00

= Naive version of the Bellman-Ford
400.00

Algorithm
= Much, Much, Much, Much Slower...

= 364x slower

350.00

300.00

econds)

= Inefficient use of compute %’5°'°°
- g
= [nefficient transfer of data over PCl-e = 20000
L] Non-deterministic 150.00

= Different routes with the same cost

100.00

= Order of execution is important
50.00

= Still the correct result

L BB

°
2
3
IAsz
I572
E '
2
3

P
z
@
£y
o
a

17

Vertex Frontier

Frontier Size for 1 Origin

3000

2500

= Improve performance through algorithmic change

2000

= Vertex Frontier tracks which vertices could result in

Frontier Size
@
3
8

an update o
= Increases Efficiency 0
= Decrease Parallelism .

Iteration

= Uses more memory

—D ——C —l

= Not enough Work

performance of “GeForce GTX TITAN X

= Latency bound
= Low number of threads
(< 2500 for network L)

Utiization

18

Origin-Vertex Frontier

Frontier Size for 1 Origin
3000

2500
2000

= Increase parallelism by solving multiple origins

1500

Frontier Size

concurrently

1000

= Origin-Vertex Frontier tracks which origins-vertex 500
pairs could result in an update o —
= Increases Parallelism — —c —t

= Uses much more memory Frontier Size All Origins

18000000

= Large amount of inactive threads

16000000

= imbalanced work-load Rececy
12000000

= Poor data-access pattern

10000000

8000000

Frontier Size

= Lots of scattered accesses 000000

4000000
2000000

0 19

Iteration

Cooperative Thread Arr

. . Links Processed Per Thread
= Number of edges per node varies - imbalanced

workload 4

= Co-operative Thread Array (CTA)
= Threads in a block collectively work on the same

portion of the frontier 2
= Balances work load U
= Improves L2 Bandwidth from 148GB/s to 716GB/s 0; I I
= CUDA 9.0 introduces clean methods to do this ‘

Imbalanced CTA

Links Processed

L2 Cache

Reads 233742509 490399 GB/s
Writes 107614703 225.779 GB/s
Total 341357212 716.178 GB/s

20

Iterative Improvements

= Profile and analyse performance after each . SRR U o Gl @

change
= Implement possible solution, and profile

again

Time (seconds)
°
g

= Resulted in
= Changing data-layout to reduce atomic

0.001

0.0001

contention
= Reduced memory usage oo
) Optimisation Iteration
= Improved Register Usage e

21

Change of Limiting Factor

= Flow Accumulation became the slowest

part Distribution of Runtime Network C

= GPU Implementation using atomicAdd €
works well on modern hardware o
= atomicAdd(double) is a hardware Zg;
instruction since Pascal e
= Software implementation on Kepler and o
Maxwell is very slow o

= Sorting based algorithm improves sert Ry s Ry e

mFlow mSSSP
Maxwell performance, but still slower

than Pascal

22

Multiple User Classes

ASSIGNMENT TIME

=1 Userdass ®Multiple Userdasses

787.41
76409

= User classes can processed independently
= CUDA Streams for concurrent processing

= Oversubscribes the GPU, allowing the
device driver to load-balance SMs

433.63

TIME (SECONDS)
39317

= Provides more work to the GPU for small
models

= Paves the way for multi-gpu

6215
4582

MODEL

23

Multiple GPUs

= Independent user classes on each GPU LRI L UL
u1 Titan Xp W2 Titan Xp

= |mbalanced workload between devices

= Only assign whole user classes

76275

Assignment Speedup Relative to Dual Xeon E5-2667

14.00

100 11.66

41605

10.00

TIME (SECONDS)
407.04

Assignment Speedup
23194

o

8

55.68
35.39

17
i

W Serial (i7 6850K) W 2xXeon E5-2667 W 1xP100 M2xP100 MW3xP100 W4xP100 MS5xP100 D ® L
MODEL

24

Volta GPU Architecture

Assignment Speedup Relative to Multi-Core

Speedup

Assignment

12.00

3.55

e

]

741

428

4.1

m1 Titan Xp %2 Titan Xp ®m1 Titan V

z

11.8511.75

= Up to 80% performance

improvement vs 1 Titan Xp

= Speed up relative to 6 core i7

= No source code changes

= Other than updating libraries
(CUB) and CUDA version.

25

GPU Accelerated Microscopic Simulation

Microscopic Simulation

= Bottom-up Simulations
= Simulations individual vehicles and local interaction

= with other vehicles
= with the environment

= Agent Based Modelling (ABM)

= Intuitive descriptions of behaviour and interactions
= Complex behaviour emerges from simple rules

= Very Computationally expensive

= High data requirements

FLAME GPU Microscopic Simulation

26

= Aimsun

Aim

= Commercial multi-core CPU microscopic simulator
= Used globally within the transport industry
= Can simulate a broad array of transport networks

and infrastructure

= Demonstrate GPUs are suitable

= Implement a subset of models
= Benchmark both applications on a scalable

transport network

27

Procedurally Generated Network

= Manhattan-style grid network

= Single lane, one-way roads

= Stop-signs at junctions

= Entrances and Exits at the edge
of the simulated grid

Junction e

Road Section <—
Turning Section K
-

28

Aimsun CPU Performance

= Single size of grid network
= 3 repetitions

= Diminishing Returns from
additional cores

Average Total Simulation Time (s)

700

600

500

400

300

200

100

Average Total Simulation Time Against Number of CPU Cores

Dual Intel Xeon E5-2643 v4
Intel Core i7 4770k

4 6
Number of Threads

29

= Gipps' Car Following Model

. = Simulated Vehicle Detectors
= Aimsun Gap Acceptance Model

. . i = Constant Vehicle Arrival
= Turning Probability based Routing

Gipps’ Car Following Model

Veree(n, t + 7) < v(n, t) + 2.5a(n)7(1 — v(n, t)/V(n))(0.025 + v(n, t)/Vt(n)%

v(n—1, t)?
d(n)

Veare(n, t + 7) < d(n)T + \/d(n)27'2 —d(n)(2[x(n—1,t) — s(n—1) — x(n, t)] — v(n, t)T —

vin,t+ 1) = min{w,ee(n, t+ 7), Veare(n, t + ‘r)} (1)

30

Flexible Large-scale Agent Modelling Environment
for the GPU

Template-based simulation environment for high
performance simulation

Agents represented as X-Machines
Message lists for communication

High level interface for describing agents,
abstracting the CUDA programming model away
from the user.

State-based representation minimises divergence and
improves coalescence

FLAME GPU

FLAME GPU

memaory

FI1()

O

F3()

N |=_
out].. 73
#

message
list

flamegpu.com

31

FLAME GPU

Output R
Queued Message

Output
Road Message
Queue
Messages

<at front of gueue}
A 4

Check Headway

| Car Following |

<has sufficient headway>

Road
Messages

<has left road section>

Output
Junction Message

Junction
Messages

<can traverse junction>

Follow Junction

O

<has left junction>

Change To

Change to
Junctions

Road Network

|-+

Messages,

Exit /

Change To
Road Network

!

1
<has IeFIt simulation>

O)

Queued Car

©)

Junction Car

Message List

—» State/Function Transition
=== Message Input/Output
<Function Condition>

32

FLAME GPU Communication

= Message Lists enable high performance memory access pattern
= and avoid issues with concurrent access to agent memory

= Typically the performance-limiting factor in FLAME GPU simulations

= Specialisation for typical communication patterns to improve performance
= All-to-All
= Discrete Partitioned Messaging (2D Cellular Automata)

= Spatially Partitioned Messaging (2D & 3D Continuous Agents)
= Non-optimal for road network models

33

-Graph Communication

v A
= Models typically need to access messages v
based on the transport network 0 1|y 2 3 |a
= Couple messages to the graph : X
= Reduce the number of messages to be — - e S e
iterated by accessing messages from the 4 s 6 7

<
>

relevant edge(s)

= |l.e. Gipps' Car Following model only

v A

requires information from the lead vehicle |g 9 10 11
Communication ‘ Messages : "
All-to-All 42 < < < < < < < < < <
Spatial 18 v A
Graph 5 12 13 14 15

Example highlighting FLAME GPU Communication strategies 34

On-Graph Communication Performance

= Measured performance of Car following behaviour message output and input

= Higher output cost, much cheaper message input cost.

Average Execution Time for Message Output Average Execution Time for Message Iteration (Car Following Model)
—+— Graph-Based 120 4 —w— Graph-Based ks
0.5 | ==+ = Spatial Partitioning - —+= = Spatial Partitioning
rrrrr e Allto-All 100 4 = Allto-Al
@ 0.4 m
£ E 804
o 2
E E
F 031 =60 4
Q (9
50 &
© o
202] 2]
20
0.1 4 et
04wt =
T T T T T T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000 0 20 40 60 80 100 120 140
Maximum No. Agents Maximum No. Agents

35

Performance Benchmarking

Workstation

= Windows and Linux

= i7 4770k (4 Cores)
= Scale vehicle population and environment

= GTX 1080
. Sca.le vehicle population for fixed size - Titan X (Pascal)
environment
. = Titan V
= 3 repetitions
= 1 hour of simulated time Nvidia DGX-1
= Multiple hardware configurations . Linux

= 2x Xeon E5 2698 v4 (20 cores ea)
= 8x Tesla P100

36

Population and Environment Scale

Average Execution Time for a 1 Hour Simulation

- o= Aimsun 8.1 - i7 4770k] = 0.5 Million Vehicles:
B e = CPU - Windows
z T
o 1071 = 5447s
£ L
[L
S .
S
] -
g w0 7
i,_-) K
= ¢
5 !
P :
[M
&
q‘>j 10 -,‘
= :
3
10° 7 - - . !
0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

37

Population and Environment Scale

103

10t

Average Total Simulation Time (s)

10°

Average Execution Time for a 1 Hour Simulation

- -® - Aimsun 8.1 - i7 4770k aee
—w— GeForce GTX 1080 (WDDM) e
— + = TITAN X (Pascal) (TCC) e :
;
i
¢
H
|
b
T T T T T
0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

0.5 Million Vehicles:
CPU - Windows

= b5447s
GPU - Windows

s 174.2s
= 31x speed up
(Titan X (Pascal))

37

Population and Environment Scale

Average Total Simulation Time (s)

103

10t

10°

Average Execution Time for a 1 Hour Simulation

- -®-- Aimsun 8.1 - i7 4770k
—w— GeForce GTX 1080 (WDDM)
— + = TITAN X (Pascal) (TCC)
---ma- Tesla P100 (Linux)

-=->--- Titan V (Linux)

T T T T T
0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

0.5 Million Vehicles:
CPU - Windows

= b5447s
GPU - Windows

s 174.2s
= 31x speed up
(Titan X (Pascal))

GPU - Linux

= 82.04s
= 66x speed up
(Titan V)

37

Population Scale for Fixed Environment

Average Simulation Time as Flow is Increased Grid Size 64 Average Simulation Time as Flow is Increased Grid Size 128

e — 10%

~=@=+ Aimsun 8.1 - i7 4770k
—#— FLAME GPU - GeForce GTX 1080
----- ® FLAME GPU - TITAN X (Pascal)

=@ Aimsun 8.1 - i7 4770k
102 { —#— FLAME GPU - GeForce GTX 1080
--# - FLAME GPU - TITAN X (Pascal)

Average Total Simulation Time (s)
Average Total Simulation Time (s

_e--
_—""-4‘——’.
PR
10" H Lo
- 10t f---
T T T T T T T T T T T
20000 40000 60000 80000 100000 120000 50000 100000 150000 200000 250000
Total Vehicle Demand Total Vehicle Demand

38

Runtime per Iteration

Average Simulation Step Time for a 1 Hour Simulation for a 256x256 Grid

Aimsun 8.1 - i7 4770k

FLAME GPU - TITAN X (Pascal ¥
600 (Pl ' /
./

500 7 ot = Population grows as

LI time progresses

400

./ = Anomalous values

correlate with

300 1 L / detector outputs

200 = Every 800 iterations
(10 minutes)

0 - T T T
0 1000 2000 3000 4000

Iteration

Average Simulation Step Time (ms)

39

Summary

Conclusion

= Macroscopic Assignment

= Up to 11.7x speed up on 1 Titan V vs 6 core i7
= Up to 11.8x speed up on 5 P100 vs dual socket
Xeons

= Microscopic Simulation

= Up to 66x speed up using a Titan V
= Real-time-ratio of 39x for up to 576000 vehicles

= More simulations in less time
= Large simulations possible

= Better-than-real-time simulation of 0.5 million

vehicles

40

Supported By Contact

= DfT Transport Technology Research Innovation Grant = p.heywood@sheffield.ac.uk

(T-TRIG July 2016) = @ptheywood

= EPSRC fellowship “Accelerating Scientific Discovery with
Accelerated Computing” (EP/N018869/1)

= Thanks to Atkins, STFC, TSC & Aimsun = rse.shef.ac.uk

= ptheywood.uk

More Information
“Data-parallel agent-based microscopic road network simulation using graphics processing
units”

https://doi.org/10.1016/j.simpat.2017.11.002

41

	Road Network Simulation
	GPU Accelerated Macroscopic Simulation
	GPU Accelerated Microscopic Simulation
	Summary

