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Road Network Simulation



Road Network Simulation

= Global transport demand is increasing
= Many constraints on transport networks

= Simulation can improve use of limited resources

= Planning

= Management
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Road Network Simulation

= Simulations are becoming more computationally
expensive

= Larger - City-scale, National-scale
= More Complex - CAVs, Smart Motorways, ...
= More Permutations

= Better-than Real-time simulations required for
active management

= Need more compute!




Simulation Categories

= Macroscopic Simulation (and Assignment) .‘ E
= Top-Down e
= High level, flow simulation

= Mesoscopic Simulation Top-Donn

= Middle-out
= Fine-grained Macrosimulation or Platoons/groups

Bottom-Up

= Microscopic Simulation

= Low level, individual vehicles

= Bottom-Up ‘
=g



Graphics Processing Units (GPUs)

= Massively Parallel co-processors
= Data-parallel algorithms and data structure

= Suitable for all scales of road network simulation

= Different degrees of parallelism expressed
= Different levels of performance improvement

NVIDIA DGX-2



GPU Accelerated Macroscopic Simulation



Macroscopic Simulation

= Top-Down Simulations

= Models networks as flows on roads (i.e pipes)

High level of abstraction

Relatively long time steps

= Misses short-term events

Low data requirements

Lower computational cost

©@@®@By Tamserpo - Own work, CC BY-SA
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SATURN

Simulation and Assignment of Traffic to Urban Road Networks

Commercial multi-core CPU software
Originally Developed in the 1970s by Dirck Van Vliet at Leeds University
Used by companies and governments for planning

= Highways England

= Transport for London (TfL)

= Transport for the North (TftN)
= etc.

Fortran 77 with OpenMP

NTKINS gATURN

Member of the SNC-Lavalin Group



SATURN Algorithms

= |terative Equilibrium-based algorithm of Assignment

and Simulation
o Network Data ——3»
= Wardrop's Equilibrium

= Assignment Phase

Link Flow Values Flow Delay Curves
= Network + Demand Matrix -> Flow per road
= Different vehicles types are considered T
independently (User Classes)
= Trip Matrix contains many Origins and Assignment-Simulation Loop in SATURN
Destinations

= Known as Zones or Centroids



SATURN Models

= Range of scales from tiny to very very large

= Road networks are very sparse graphs
= Preprocessing step to create a denser representation
= Referred to as “Spider Network"
= Contraction Hierarchies

= Network E is far too small for the GPU
= Very useful for debugging!

= These are Very Sparse graphs, even when preprocessed

Model ‘ Size ‘ Centroids ‘ Vertices Edges
E Town 12 17 74
D Small City 547 2700 25385
C Large City 2548 15179 | 132600
L Metropolitan 5194 18427 | 192711
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TURN Profiling

Time per subroutine for Network L

g q 5000
= Serial version of SATALL ” )
40000 97.4%
= Largest available model (L)
35000
= London + Surrounding area .
= > 11 Hour Runtime T 25000
p
. . . £
= 97.5% in a single subroutine = 20000
. o 15000
= Candidate for Parallelisation
10000
= Computes shortest paths, and traces them s000
aCCumu|at|ng ﬂOW o 0.3% 0.3% 0.1% 0.1%
A B C D E
Subroutine
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CPU Performance

Single Core CPU Multi-Core CPU

Total Time - Serial SATALL Total Time - Multicore SATALL
o 2
50000.00 =8 8000.00 3
EES ~
45000.00 S8 760000
40000.00 P
6000.00 o
35000.00 g
%
— % 5000.00
3 30000.00 3
§ o
2 v
[
& 2500000 8 400000
o o Rl
E [ E b1
E 20000.00 83 L - 2
g = X
8 3 3
15000.00 83 s
- 2000.00 o5
10000.00 @ 8 -
g o 1000.00 [
g g R
5000.00 5oy 8 8 5 g 5 2
g 4 & &
0.00 —-—— 0.00 I ==
E D c L E D c L
Wi7-4770K (8) Wi7-6850k (12) mi7-4770K (8) mi7-6850k (12)

12



CPU Scaling

Single Core CPU Multi-Core CPU
Network C Speedup against Network L Speedup against Total Sooed
Thread Count Thread Count SRR
13.000 13.000 —&— Assignment Speadup
12.000 P 12.000 ° - & - Perfect Scaling
11.000 ° 11.000 .
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9.000 é 9.000 .
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§ 7.000 P4 § 7.000 é
2 6.000 & & 600 . = 12 threads
@ 5000 e 5.000 o N
4.000 . 4.000 . = 3 Repetitions
3.000 ey . e
2,000 2.000 = Diminishing
1.000 1.000
5000 0000 Returns

0123 4567 891011213
Thread Count

0123456 7 8910111213
Thread Count
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CPU Algorithm

For each User Class of vehicle
For each origin centroid
Calculate shortest paths (SSSP)
For each destination centroid
Trace the route updating flow (FA)
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CPU Algorithm

= Single Source Shortest Path (SSSP)
= Calculated for all origins
= Typically % of total nodes
= All-Pair Shortest Path (APSP) algorithms would do too much work
= Uses the D'Esopo-Pape algorithm
= Algorithmic decision in the 1970s, due to benchmarking at the time
= Switching to a modern implementation of Dijkstra's would likely yield a speed up
= Flow Accumulation
= Trace routes between all origin-destination pairs
= Update per-edge flow value at each step
= Double precision to avoid numerical loss
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GPU Algorithm

For each User Class of vehicle (independent tasks)
For each origin (centroid) calculate SSSP in parallel
For each origin—destination pair accumulate flow in parallel

= Use the Bellman-Ford SSSP algorithm
= Highly Parallel, but much less-efficient than Dijkstra's or D'Esopo-Pape

= For up to a worst-case number of iterations
= Consider each edge in the network, updating routing information.

16



Initial GPU Implementation

SSSP Results for Single Origin

500.00

450.00

= Naive version of the Bellman-Ford
400.00

Algorithm
= Much, Much, Much, Much Slower...

= 364x slower

350.00

300.00

econds)

= Inefficient use of compute %’5°'°°
- g
= [nefficient transfer of data over PCl-e = 20000
L] Non-deterministic 150.00

= Different routes with the same cost

100.00

= Order of execution is important
50.00

= Still the correct result

L BB

°
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Vertex Frontier

Frontier Size for 1 Origin

3000

2500

= Improve performance through algorithmic change

2000

= Vertex Frontier tracks which vertices could result in

Frontier Size
@
3
8

an update o
= Increases Efficiency 0
= Decrease Parallelism .

Iteration

= Uses more memory

—D ——C —l

= Not enough Work

performance of “GeForce GTX TITAN X

= Latency bound
= Low number of threads
(< 2500 for network L)

Utiization
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Origin-Vertex Frontier

Frontier Size for 1 Origin
3000

2500
2000

= Increase parallelism by solving multiple origins

1500

Frontier Size

concurrently

1000

= Origin-Vertex Frontier tracks which origins-vertex 500
pairs could result in an update o —
= Increases Parallelism — —c —t

= Uses much more memory Frontier Size All Origins

18000000

= Large amount of inactive threads

16000000

= imbalanced work-load Rececy
12000000

= Poor data-access pattern

10000000

8000000

Frontier Size

= Lots of scattered accesses 000000

4000000
2000000

0 19
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Cooperative Thread Arr

. . Links Processed Per Thread
= Number of edges per node varies - imbalanced

workload 4

= Co-operative Thread Array (CTA)
= Threads in a block collectively work on the same

portion of the frontier 2
= Balances work load U
= Improves L2 Bandwidth from 148GB/s to 716GB/s 0; I I
= CUDA 9.0 introduces clean methods to do this ‘

Imbalanced CTA

Links Processed

L2 Cache

Reads 233742509 490399 GB/s
Writes 107614703 225.779 GB/s
Total 341357212 716.178 GB/s
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Iterative Improvements

= Profile and analyse performance after each . SRR U o Gl @

change
= Implement possible solution, and profile

again

Time (seconds)
°
g

= Resulted in
= Changing data-layout to reduce atomic

0.001

0.0001

contention
= Reduced memory usage oo
) Optimisation Iteration
= Improved Register Usage e
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Change of Limiting Factor

= Flow Accumulation became the slowest

part Distribution of Runtime Network C

= GPU Implementation using atomicAdd €
works well on modern hardware o
= atomicAdd(double) is a hardware Zg;
instruction since Pascal e
= Software implementation on Kepler and o
Maxwell is very slow o

= Sorting based algorithm improves sert Ry s Ry e

mFlow mSSSP
Maxwell performance, but still slower

than Pascal
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Multiple User Classes

ASSIGNMENT TIME

=1 Userdass  ®Multiple Userdasses

787.41
76409

= User classes can processed independently
= CUDA Streams for concurrent processing

= Oversubscribes the GPU, allowing the
device driver to load-balance SMs

433.63

TIME (SECONDS)
39317

= Provides more work to the GPU for small
models

= Paves the way for multi-gpu

6215
4582

MODEL
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Multiple GPUs

= Independent user classes on each GPU LRI L UL
u1 Titan Xp W2 Titan Xp

= |mbalanced workload between devices

= Only assign whole user classes

76275

Assignment Speedup Relative to Dual Xeon E5-2667

14.00

100 11.66

41605

10.00

TIME (SECONDS)
407.04

Assignment Speedup
23194

o

8

55.68
35.39

17
i

W Serial (i7 6850K) W 2xXeon E5-2667 W 1xP100 M2xP100 MW3xP100 W4xP100 MS5xP100 D ® L
MODEL
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Volta GPU Architecture

Assignment Speedup Relative to Multi-Core

Speedup

Assignment

12.00

3.55

e

]

741

428

4.1

m1 Titan Xp %2 Titan Xp ®m1 Titan V

z

11.8511.75

= Up to 80% performance

improvement vs 1 Titan Xp

= Speed up relative to 6 core i7

= No source code changes

= Other than updating libraries
(CUB) and CUDA version.
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GPU Accelerated Microscopic Simulation




Microscopic Simulation

= Bottom-up Simulations
= Simulations individual vehicles and local interaction

= with other vehicles
= with the environment

= Agent Based Modelling (ABM)

= Intuitive descriptions of behaviour and interactions
= Complex behaviour emerges from simple rules

= Very Computationally expensive

= High data requirements

FLAME GPU Microscopic Simulation
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= Aimsun

Aim

= Commercial multi-core CPU microscopic simulator
= Used globally within the transport industry
= Can simulate a broad array of transport networks

and infrastructure

= Demonstrate GPUs are suitable

= Implement a subset of models
= Benchmark both applications on a scalable

transport network

27



Procedurally Generated Network

= Manhattan-style grid network

= Single lane, one-way roads

= Stop-signs at junctions

= Entrances and Exits at the edge
of the simulated grid

Junction e

Road Section <—
Turning Section K
-

28



Aimsun CPU Performance

= Single size of grid network
= 3 repetitions

= Diminishing Returns from
additional cores

Average Total Simulation Time (s)

700

600

500

400

300

200

100

Average Total Simulation Time Against Number of CPU Cores

Dual Intel Xeon E5-2643 v4
Intel Core i7 4770k

4 6
Number of Threads
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= Gipps' Car Following Model

. = Simulated Vehicle Detectors
= Aimsun Gap Acceptance Model

. . i = Constant Vehicle Arrival
= Turning Probability based Routing

Gipps’ Car Following Model

Veree(n, t + 7) < v(n, t) + 2.5a(n)7(1 — v(n, t)/V(n))(0.025 + v(n, t)/Vt(n)%

v(n—1, t)?
d(n)

Veare(n, t + 7) < d(n)T + \/d(n)27'2 —d(n)(2[x(n—1,t) — s(n—1) — x(n, t)] — v(n, t)T —

vin,t+ 1) = min{w,ee(n, t+ 7), Veare(n, t + ‘r)} (1)
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Flexible Large-scale Agent Modelling Environment
for the GPU

Template-based simulation environment for high
performance simulation

Agents represented as X-Machines
Message lists for communication

High level interface for describing agents,
abstracting the CUDA programming model away
from the user.

State-based representation minimises divergence and
improves coalescence

FLAME GPU

FLAME GPU

memaory

FI1()

O

F3()

N |=_
out].. 73
#

message
list

flamegpu.com
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FLAME GPU

Output R
Queued Message

Output
Road Message
Queue
Messages

<at front of gueue}
A 4

Check Headway

| Car Following |

<has sufficient headway>

Road
Messages

<has left road section>

Output
Junction Message

Junction
Messages

<can traverse junction>

Follow Junction

O

<has left junction>

Change To

Change to
Junctions

Road Network

|-+

Messages,

Exit /

Change To
Road Network

!

1
<has IeFIt simulation>

O)

Queued Car

©)

Junction Car

Message List

—» State/Function Transition
=== Message Input/Output
<Function Condition>
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FLAME GPU Communication

= Message Lists enable high performance memory access pattern
= and avoid issues with concurrent access to agent memory

= Typically the performance-limiting factor in FLAME GPU simulations

= Specialisation for typical communication patterns to improve performance
= All-to-All
= Discrete Partitioned Messaging (2D Cellular Automata)

= Spatially Partitioned Messaging (2D & 3D Continuous Agents)
= Non-optimal for road network models
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-Graph Communication

v A
= Models typically need to access messages v
based on the transport network 0 1|y 2 3 |a
= Couple messages to the graph : X
= Reduce the number of messages to be — - e S e
iterated by accessing messages from the 4 s 6 7

<
>

relevant edge(s)

= |l.e. Gipps' Car Following model only

v A

requires information from the lead vehicle |g 9 10 11
Communication ‘ Messages : "
All-to-All 42 < < < < < < < < < <
Spatial 18 v A
Graph 5 12 13 14 15

Example highlighting FLAME GPU Communication strategies 34



On-Graph Communication Performance

= Measured performance of Car following behaviour message output and input

= Higher output cost, much cheaper message input cost.

Average Execution Time for Message Output Average Execution Time for Message Iteration (Car Following Model)
—+— Graph-Based 120 4 —w— Graph-Based ks
0.5 | ==+ = Spatial Partitioning - —+= = Spatial Partitioning
rrrrr e Allto-All 100 4 = Allto-Al
@ 0.4 m
£ E 804
o 2
E E
F 031 =60 4
Q (9
50 &
© o
202 ] 2 ]
20
0.1 4 et
04wt =
T T T T T T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000 0 20 40 60 80 100 120 140
Maximum No. Agents Maximum No. Agents
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Performance Benchmarking

Workstation

= Windows and Linux

= i7 4770k (4 Cores)
= Scale vehicle population and environment

= GTX 1080
. Sca.le vehicle population for fixed size - Titan X (Pascal)
environment
. = Titan V
= 3 repetitions
= 1 hour of simulated time Nvidia DGX-1
= Multiple hardware configurations . Linux

= 2x Xeon E5 2698 v4 (20 cores ea)
= 8x Tesla P100
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Population and Environment Scale

Average Execution Time for a 1 Hour Simulation

- o= Aimsun 8.1 - i7 4770k ] = 0.5 Million Vehicles:
B e = CPU - Windows
z T
o 1071 = 5447s
£ L
[ L
S .
S
] -
g w0 7
i,_-) K
= ¢
5 !
P :
[ M
&
q‘>j 10 -,‘
= :
3
10° 7 - - . !
0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand
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Population and Environment Scale

103

10t

Average Total Simulation Time (s)

10°

Average Execution Time for a 1 Hour Simulation

- -® - Aimsun 8.1 - i7 4770k aee
—w— GeForce GTX 1080 (WDDM) e
— + = TITAN X (Pascal) (TCC) e :
;
i
¢
H
|
b
T T T T T
0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

0.5 Million Vehicles:
CPU - Windows

= b5447s
GPU - Windows

s 174.2s
= 31x speed up
(Titan X (Pascal))
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Population and Environment Scale

Average Total Simulation Time (s)

103

10t

10°

Average Execution Time for a 1 Hour Simulation

- -®-- Aimsun 8.1 - i7 4770k
—w— GeForce GTX 1080 (WDDM)
— + = TITAN X (Pascal) (TCC)
---ma- Tesla P100 (Linux)

-=->--- Titan V (Linux)

T T T T T
0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

0.5 Million Vehicles:
CPU - Windows

= b5447s
GPU - Windows

s 174.2s
= 31x speed up
(Titan X (Pascal))

GPU - Linux

= 82.04s
= 66x speed up
(Titan V)
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Population Scale for Fixed Environment

Average Simulation Time as Flow is Increased Grid Size 64 Average Simulation Time as Flow is Increased Grid Size 128

e — 10%

~=@=+ Aimsun 8.1 - i7 4770k
—#— FLAME GPU - GeForce GTX 1080
----- ® FLAME GPU - TITAN X (Pascal)

=@ Aimsun 8.1 - i7 4770k
102 { —#— FLAME GPU - GeForce GTX 1080
--# - FLAME GPU - TITAN X (Pascal)

Average Total Simulation Time (s)
Average Total Simulation Time (s

_e--
_—""-4‘——’.
PR
10" H Lo
- 10t f---
T T T T T T T T T T T
20000 40000 60000 80000 100000 120000 50000 100000 150000 200000 250000
Total Vehicle Demand Total Vehicle Demand
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Runtime per Iteration

Average Simulation Step Time for a 1 Hour Simulation for a 256x256 Grid

Aimsun 8.1 - i7 4770k

FLAME GPU - TITAN X (Pascal ¥
600 (Pl ' /
./

500 7 ot = Population grows as

LI time progresses

400

./ = Anomalous values

correlate with

300 1 L / detector outputs

200 = Every 800 iterations
(10 minutes)

0 - T T T
0 1000 2000 3000 4000

Iteration

Average Simulation Step Time (ms)
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Summary




Conclusion

= Macroscopic Assignment

= Up to 11.7x speed up on 1 Titan V vs 6 core i7
= Up to 11.8x speed up on 5 P100 vs dual socket
Xeons

= Microscopic Simulation

= Up to 66x speed up using a Titan V
= Real-time-ratio of 39x for up to 576000 vehicles

= More simulations in less time
= Large simulations possible

= Better-than-real-time simulation of 0.5 million

vehicles
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More Information
“Data-parallel agent-based microscopic road network simulation using graphics processing
units”

https://doi.org/10.1016/j.simpat.2017.11.002
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