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Introduction

e Simulations are used for -_—
planning and management s
transport networks.

e Microscopic simulations are
low-level simulations:

e Bottom-Up simulations

 Simulate individual vehicles
and Local interactions

« Complex behaviour
emerges from simple models

e Computationally Expensive -
Active Trafflc Management in the UK [1]

Figure1

e Existing tools used in industry use CPUs
e l.e. Aimsun[2], SUMO[3], Paramics[4], VISSIM[5], etc
 Single-core or multi-core applications
» Task-parallel or coarse-grained data-parallel applications
e Long run-times for large-scale networks
e Diminishing returns from additional CPU cores (Figure 2)
 Increased performance and scalability are required

Average Total Simulation Time Against Number of CPU Cores

Dual Intel Xeon E5-2643 v4
Intel Core i7 4770k

e We have implemented a GPU % -
accelerated road network
microsimulation

 Cross-validated our
implementation against Aimsun,
a commercial, multi-core CPU

Average Total Simulation Time (s)

simulator u

* Benchmarked both simulators e I R T i .

using a procedurally generated 100 -

network and compared 0 | | | |

performance [6] 0 2 1 6 8 10
Number of Threads

https://doi.org/10.1016/j.simpat.2017.11.002 Figure 2 - Aimsun simulation performance for different CPU core

counts
Models

* Implemented a subset of models implemented in Aimsun

e Gipps' car following model [7] [8] e Stop signs

* Vehicle detectors [7]

e Constant vehicle arrival with virtual-
gueues for overflow [7]

e Aimsun gap-acceptance model [7]
* Turning probabilities [7]
* Single-lane roads

Benchmark Network

e Artificial benchmark network

* Procedurally-generated bl

 Manhattan-style grid Y

e One-way, single-lane roads

 Demand input from outer edges i

* 50%-50% turning probabilities

for internal junctions SR A S B

e Reduced turning probability to \ \ o
leave the simulated region Road Section <—

Turning Section 4&
Figure 3 - A5 x 5 artificial grid road network
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GPU Implementation

e Implemented models using FLAME GPU

e Flexible Large-scale Agent Modelling Environment for the GPU

e Template-based simulation
environment for high performance,
GPU-accelerated simulations [9]
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e Agents represented as X-Machines

Output
Queued Message

with message lists for communication

e Provides a high level interface for
describing agents, abstracting the
CUDA programming model [10]
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e http://www.flamegpu.com

 CSR representation of the network graph

 Individual vehicle models implemented
using one or more states and agent
functions (Figure 4)

e Cross validated against CPU
implementation (Aimsun), showing
statistically similar results
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Figure 4 - FLAME GPU state diagram for 'car' agents
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Performance

e Several benchmark experiments
 Increase scale and population of network (Fig 8)

 Workstation
e i7 4770k

e Titan X (Pascal)

e GeForce GTX 1080
* Nvidia DGX-1

e« Xeon E5 2698 v4

e Telsa P1I00 SMX2

 Increase population for fixed size networks (Fig 9-11)

 Inspect per simulation-iteration performance (Fig 12)

 Up to 43.8x faster than CPU
e 0.5 million vehicles

e 28x real time (~0.5x on CPU)
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Figure 8 - Average simulation time for 1 hour simulations of the benchmark network at various scales

Average Simulation Time against Input Flow for a 64x64 Grid Average Simulation Time against Input Flow for a 128x128 Grid
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 Agents communicate using message lists ; v ; A
» Message lists must bet iterated by each agent, to find the
relevant message(s) i v i i
 FLAME GPU provides specialised messaging techniques o 1 _____ vl 2 _____________ 3 _____ Al
 All to All (Global) v
e Spatial Partitioning > > » > »: > > » > >
e Improves performance by reducing the number of 4 5 _____ v ______ irf_i _____________ 7 _____ Al
messages iterated per agent 5 v 5 5 A
e This can still have a significant performance impact
. o
» Road network models typically require information from  [%------------. fr? ----- v }%9 ------------ 11 R EEREEE
a small number of local vehicles i v E E N
 New graph-based communication strategy implemented | « < <« | |4« 4 < 4 <, «
e Restricts messages to those from the relevant parts . 513 v 514 515 A

of the graph

*Allows data-parallel access to relevant messages

Input Flow per Edge (Vehicles per Hour)

Figure 9 - Average simulation time for a 1 hour simulation
of the 64x64 grid network at various input flow rates

Average Simulation Time against Input Flow for a 256x256 Grid

Input Flow per Edge (Vehicles per Hour)

Figure 10 - Average simulation time for a 1 hour simulation
of the 128x128 grid network at various input flow rates

Average Simulation Step Time for a 1 Hour Simulation for a 256x256 Grid

Figure 5 - Communication strategy effects on message list size. The
white car will recieve messages from 42 messages using all to all
communication, 18 messages in spatially partitioned (blue agents)

and 5 messages using graph-based communication (orange borders).

e Figure 5 shows how each communication strategy can impact the number of messages iterated for

a model such as the car following model.

e Figures 6 and 7 show effect on performance of each communication strategy
e Graph-Based communication has higher output cost, but much lower message iteration time.
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Figure 6 - Performance cost of message output for each communicaiton

strateqgy.

Average Execution Time for Message Iteration (Car Following Model)
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Figure 7 - Performance cost of message iteration for each communication
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Figure 11 - Average simulation time for a 1 hour simulation Figure 12 - Average time per simulation iterateration for

of the 256x256 grid network at various input flow rates each simulator.

Conclusion

* GPUs offer significant performance improvements for large-scale microscopic
simulations of road networks networks

 Up to 43x speed-up compared to equivalent multi-core CPU simulation
e Demonstrated 500,000 vehicles simulated at 25x real time

* Reducing global memory accesses through specialised agent communication
technique enables high performance
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